In the last post, I have shared about a debate:

Today, I would like to show the proof on Corenfield’s Inequality, an inequality that settled the debate. I have read the original proof on the paper. Although the author said it is obvious, I don’t think so (always find reading maths discouraging LOL).

I spent some time understanding the first paragraph. Maybe it would be better to show you the causal diagram:

Think of A as smoking, D as lung cancer, and B as the confounder. Much better now.

The next difficulty is understanding R1 and R2. Why they are expressed like that? In the beginning, I used some complicated steps to reproduce the formula, like the chain rule of probability, conditional independence (like the steps in this post). But, after I look at the above diagram, I start to realize the “obvious” way.

You want to probability of D given A, but there is no direct link between the two. So, you can make use of B. P(B|A)*P(D|B) is one of the ways to link A and D. There is another way, P(B’|A)*P(D|B’). So the sum of the two gives P(D|A). Similarly for P(D|A’). After realizing that, the following steps are “obvious”. You just need some algebraic steps to complete the proof.

Hey, wait!

Before you go, Subscribe and Get Notify for Content Like This.